limx→0ex

来源:学生cc国际平台总部_cc国际网投代理水钱_国际cc手机客户端下载帮助网 编辑:cc国际平台总部_cc国际网投代理水钱_国际cc手机客户端下载帮 时间:2019/10/08 20:14:46
limx→0 ex次方-e负x次方÷x

limx→0ex次方-e负x次方÷xlimx→0ex次方-e负x次方÷xlimx→0ex次方-e负x次方÷x2(洛比达)limx→0(ex次方-e负x次方)÷x=limx→0[e^x-e^(-x)]''

limx趋近于0(1/(EX次方-1)-1/x)

limx趋近于0(1/(EX次方-1)-1/x)limx趋近于0(1/(EX次方-1)-1/x)limx趋近于0(1/(EX次方-1)-1/x)lim{1/[e^(x^2)-1]-1/x}=lim[x

高数求极限 limx趋近于0 【ex-x】(1/x^2)ex是e的x次方 (1/x^2)是【ex

高数求极限limx趋近于0【ex-x】(1/x^2)ex是e的x次方(1/x^2)是【ex-x】的次数本题答案是根号e求详细步骤高数求极限limx趋近于0【ex-x】(1/x^2)ex是e的x次方(1

limx→0 tan2x/sinx

limx→0tan2x/sinxlimx→0tan2x/sinxlimx→0tan2x/sinxlimx→0tan2x/sinx=limx→0sin2x/(sinxcos2x)=limx→02sinx

limx→0(arctanx/x) 极限步骤

limx→0(arctanx/x)极限步骤limx→0(arctanx/x)极限步骤limx→0(arctanx/x)极限步骤用罗必达法则,一次就出来了.

limx→0+(x^sinx)求极限

limx→0+(x^sinx)求极限limx→0+(x^sinx)求极限limx→0+(x^sinx)求极限limx→+0时,tan9x等价于9x,sin√x等价于√x,sinx^2等价于x^2原式=

limx→0sin3x/sin5x,求极限

limx→0sin3x/sin5x,求极限limx→0sin3x/sin5x,求极限limx→0sin3x/sin5x,求极限limsin3x/sin5x=lim3x/(5x)=3/5========

limx→0 (tanx-sinx)/x

limx→0(tanx-sinx)/xlimx→0(tanx-sinx)/xlimx→0(tanx-sinx)/xlim(x→0)(tanx-sinx)/x=lim(x→0)tanx(1-cosx)/

limx→0 x/根号(1-cosx)

limx→0x/根号(1-cosx)limx→0x/根号(1-cosx)limx→0x/根号(1-cosx)lim(x→0)x/√(1-cosx)=lim(x→0)x/√2sin2x/2=l

limx→0(x/sin2x)=

limx→0(x/sin2x)=limx→0(x/sin2x)=limx→0(x/sin2x)=

limx→0(cotx-x分之一)

limx→0(cotx-x分之一)limx→0(cotx-x分之一)limx→0(cotx-x分之一)通分:lim(cotx-1/x)=lim(xcosx-sinx)/(xsinx)由等价无穷小代换,

limx→0 (a^-1)/x

limx→0(a^-1)/xlimx→0(a^-1)/xlimx→0(a^-1)/xlimx→0(a^x-1)/x=lna

limx→0(1-x)^x=

limx→0(1-x)^x=limx→0(1-x)^x=limx→0(1-x)^x=x→0时分子趋向于1,分母趋向于0.1^0=1.=11111111111111111111111111111111

limx→0tan3x/x计算极限

limx→0tan3x/x计算极限limx→0tan3x/x计算极限limx→0tan3x/x计算极限x趋于0,tanx和x是等价无穷小则tan3x和3x是等价无穷小tan3x/x=3*(tan3x/

limx→0(1-x)^(1/x)

limx→0(1-x)^(1/x)limx→0(1-x)^(1/x)limx→0(1-x)^(1/x)是1/e.原式=e^(ln(1-x)/x)=e^(-1)=1/e

limx→0(a^x-1)/xlna

limx→0(a^x-1)/xlnalimx→0(a^x-1)/xlnalimx→0(a^x-1)/xlna洛必达定理,分子求导成lna*a^X,分子变成lna,相除变成a^X,当X=0时,极限为1

求limx→0 1/1-cosx

求limx→01/1-cosx求limx→01/1-cosx求limx→01/1-cosx洛必达法则

limx→0(1/x)^tanx

limx→0(1/x)^tanxlimx→0(1/x)^tanxlimx→0(1/x)^tanx原式=e^{lim(x->0)[ln(1/x)/cotx]}=e^{lim(x->0)[(x(-1/x&

limx→0{(tanx-x)/x^3}

limx→0{(tanx-x)/x^3}limx→0{(tanx-x)/x^3}limx→0{(tanx-x)/x^3}lim(x→0){(tanx-x)/x^3}=lim(x→0{(tanx-x)''

limx→0xcos1/x等于多少

limx→0xcos1/x等于多少limx→0xcos1/x等于多少limx→0xcos1/x等于多少无穷小乘有界函数,还是无穷小所以结果为00cos1/x有界